The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism

Author:

Zimmermann Sandra E1ORCID,Benstein Ruben M12ORCID,Flores-Tornero María34ORCID,Blau Samira1,Anoman Armand D34ORCID,Rosa-Téllez Sara34,Gerlich Silke C15ORCID,Salem Mohamed A67ORCID,Alseekh Saleh68ORCID,Kopriva Stanislav15ORCID,Wewer Vera15ORCID,Flügge Ulf-Ingo15,Jacoby Richard P15,Fernie Alisdair R68ORCID,Giavalisco Patrick69ORCID,Ros Roc34ORCID,Krueger Stephan1ORCID

Affiliation:

1. Institute for Plant Sciences, University of Cologne, Cologne 50674, Germany

2. Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå SE-901 87, Sweden

3. Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, Spain

4. Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot 46100, Spain

5. Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany

6. Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany

7. Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt

8. Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria

9. Max Planck Institute for Biology of Ageing, Cologne 50933, Germany

Abstract

Abstract Because it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant development is not fully understood. In this study, we examine the relative contributions of photorespiration and PPSB to providing serine for growth and metabolism in the C3 model plant Arabidopsis thaliana. Our analyses of cell proliferation and elongation reveal that PPSB-derived serine is indispensable for plant growth and its loss cannot be compensated by photorespiratory serine biosynthesis. Using isotope labeling, we show that PPSB-deficiency impairs the synthesis of proteins and purine nucleotides in plants. Furthermore, deficiency in PPSB-mediated serine biosynthesis leads to a strong accumulation of metabolites related to nitrogen metabolism. This result corroborates 15N-isotope labeling in which we observed an increased enrichment in labeled amino acids in PPSB-deficient plants. Expression studies indicate that elevated ammonium uptake and higher glutamine synthetase/glutamine oxoglutarate aminotransferase (GS/GOGAT) activity causes this phenotype. Metabolic analyses further show that elevated nitrogen assimilation and reduced amino acid turnover into proteins and nucleotides are the most likely driving forces for changes in respiratory metabolism and amino acid catabolism in PPSB-deficient plants. Accordingly, we conclude that even though photorespiration generates high amounts of serine in plants, PPSB-derived serine is more important for plant growth and its deficiency triggers the induction of nitrogen assimilation, most likely as an amino acid starvation response.

Funder

Deutsche Forschungsgemeinschaft

DFG

German Research Foundation

Germany’s Excellence Strategy

Spanish Government and the European Union

Valencian Regional Government

University of Valencia

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3