Hydrolyzable tannins are incorporated into the endocarp during sclerification of the water caltrop Trapa natans

Author:

Huss Jessica C1ORCID,Antreich Sebastian J1,Felhofer Martin1ORCID,Mayer Konrad1ORCID,Eder Michaela2ORCID,Vieira Dias dos Santos Ana Catarina3ORCID,Ramer Georg3,Lendl Bernhard3ORCID,Gierlinger Notburga1ORCID

Affiliation:

1. Institute of Biophysics, University of Natural Resources and Life Sciences (BOKU) , 1190 Vienna , Austria

2. Department of Biomaterials, Max Planck Institute of Colloids and Interfaces , 14476 Potsdam-Golm , Germany

3. Institute of Chemical Technologies and Analytics, Technische Universität Wien , 1060 Vienna , Austria

Abstract

Abstract The water caltrop (Trapa natans) develops unique woody fruits with unusually large seeds among aquatic plants. During fruit development, the inner fruit wall (endocarp) sclerifies and forms a protective layer for the seed. Endocarp sclerification also occurs in many land plants with large seeds; however, in T. natans, the processes of fruit formation, endocarp hardening, and seed storage take place entirely underwater. To identify potential chemical and structural adaptations for the aquatic environment, we investigated the cell-wall composition in the endocarp at a young developmental stage, as well as at fruit maturity. Our work shows that hydrolyzable tannins—specifically gallotannins—flood the endocarp tissue during secondary wall formation and are integrated into cell walls along with lignin during maturation. Within the secondary walls of mature tissue, we identified unusually strong spectroscopic features of ester linkages, suggesting that the gallotannins and their derivatives are cross-linked to other wall components via ester bonds, leading to unique cell-wall properties. The synthesis of large amounts of water-soluble, defensive aromatic metabolites during secondary wall formation might be a fast way to defend seeds within the insufficiently lignified endocarp of T. natans.

Funder

European Research Council

HSRM Project NANOBILD

Austrian Science Fund FWF

COMET Centre CHASE

Austrian Research Promotion Agency

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3