SPATULA and ALCATRAZ confer female sterility and fruit cavity via mediating pistil development in cucumber

Author:

Cheng Zhihua1ORCID,Song Xiaofei2,Liu Xiaofeng1,Yan Shuangshuang1ORCID,Song Weiyuan1,Wang Zhongyi1,Han Lijie1,Zhao Jianyu1,Yan Liying2,Zhou Zhaoyang1,Zhang Xiaolan1ORCID

Affiliation:

1. Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University , Beijing 100193, China

2. College of Horticulture Science and Technology, Hebei Normal University of Science and Technology , Qinhuangdao, China

Abstract

Abstract Fruits and seeds play essential roles in plant sexual reproduction and the human diet. Successful fertilization involves delivery of sperm in the pollen tube to the egg cell within the ovary along the transmitting tract (TT). Fruit cavity is an undesirable trait directly affecting cucumber (Cucumis sativus) commercial value. However, the regulatory genes underlying fruit cavity formation and female fertility determination remain unknown in crops. Here, we characterized a basic Helix-Loop-Helix (bHLH) gene C. sativus SPATULA (CsSPT) and its redundant and divergent function with ALCATRAZ (CsALC) in cucumber. CsSPT transcripts were enriched in reproductive organs. Mutation of CsSPT resulted in 60% reduction in female fertility, with seed produced only in the upper portion of fruits. Csspt Csalc mutants displayed complete loss of female fertility and fruit cavity due to carpel separation. Further examination showed that stigmas in the double mutant turned outward with defective papillae identity, and extracellular matrix contents in the abnormal TT were dramatically reduced, which resulted in no path for pollen tube extension and no ovules fertilized. Biochemical and transcriptome analysis showed that CsSPT and CsALC act in homodimers and heterodimers to confer fruit cavity and female sterility by mediating genes involved in TT development, auxin-mediated signaling, and cell wall organization in cucumber.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects

Chinese Universities Scientific Fund

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3