Affiliation:
1. State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University , Kaifeng 475004 , China
2. Sanya Institute, Henan University , Sanya 572025 , China
Abstract
AbstractProgramed cell death (PCD) plays fundamental roles in plant development and responses to environmental stresses. Here, we report a protein, SICKLE (SIC), which represses PCD. In Arabidopsis (Arabidopsis thaliana), the loss-of-function mutant of SIC, sic-4, hyperaccumulated lariat intronic RNAs (lariRNAs) and exhibited PCD. The gene encoding an RNA debranching enzyme 1 (DBR1), a rate-limiting enzyme for lariRNAs decay, was overexpressed to reduce the level of lariRNAs in the sic-4 mutant, which led to suppression of PCD. Meanwhile, another lariRNAs hyper-accumulating mutant, dbr1-2, also exhibited PCD, further indicating that sic-4 PCD is caused by hyper-accumulation of lariRNAs. Transcriptional profiling analyses revealed that the sic-4 mutation disturbed alternative splicing and decay of mRNAs associated with salicylic acid (SA) homeostasis, a well-known molecule functioning in PCD regulation. Moreover, SA is dramatically increased in sic-4 and the disruption of SA biosynthesis and signaling suppressed PCD in the mutant, demonstrating that SA functions downstream of sic-4. Taken together, our results demonstrate that SIC is involved in regulating SA-triggered PCD.
Funder
National Natural Science Foundation of China
Outstanding Youth Foundation of Henan Province
Programs for Team of Innovative Research (in Science and Technology) in Henan Province
Foundation of Henan Educational Committee
111 Project
Guiding Funds of Central Government for Supporting the Development of the Local Science and Technology in Henan province
Henan Overseas Expertise Introduction Center for Discipline Innovation
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献