Transcription-associated metabolomic adjustments in maize occur during combined drought and cold stress

Author:

Guo Qianqian12ORCID,Li Xia2,Niu Li2,Jameson Paula E3ORCID,Zhou Wenbin2ORCID

Affiliation:

1. China Grassland Research Center, School of Grassland Science, Beijing Forestry University, Beijing 100083, China

2. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand

Abstract

Abstract Although simultaneous drought and cold stress occurs, especially in northwestern and eastern regions of China, and is an important factor limiting agricultural productivity, there are few studies focusing on plant responses to a combination of drought and cold stress. Here, by partially overlapping drought and cold stresses, we characterized the acclimation of maize (Zea mays B73) to these two stresses using physiological measurements, as well as comparative transcriptomics combined with metabolomics and hormonal analyses during the stress treatments and recovery stages. The combined drought and cold stress and drought stress alone were accompanied by a decline in photosynthetic capacity and enhanced transcriptional response, and subsequent recovery of these following removal from stress, whereas cold stress alone was accompanied by irreversible damage to photosynthetic capacity and chloroplast structure. The stress combination induced transcription-associated metabolomic alterations, in which raffinose, trehalose-6-phosphate, and proline accumulated, and monosaccharide abundance increased. Concomitantly, the increased abscisic acid (ABA) content and upregulated ABA signaling pathway may have provided the transcriptional regulation for the metabolic changes. In a parallel experiment, ABA treatments prior to exposure of the plants to cold stress primed the plants to survive the cold stress, thus confirming a key role for the endogenous ABA activated by the drought pretreatment in acclimation of the plants to cold. We present a model showing that the plant response to the combined stress is multi-faceted and reveal an ABA-dependent maize acclimation mechanism to the stress combination.

Funder

Innovation Program of Chinese Academy of Agricultural Sciences

Youth Program of the Chinese Academy of Agricultural Science

National Key Research and Development Program China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3