Axes and polarities in leaf vein formation

Author:

Scarpella Enrico1ORCID

Affiliation:

1. Department of Biological Sciences, University of Alberta , CW-405 Biological Sciences Building, Edmonton, AB T6G 2E9 , Canada

Abstract

AbstractFor multicellular organisms to develop, cells must grow, divide, and differentiate along preferential or exclusive orientations or directions. Moreover, those orientations, or axes, and directions, or polarities, must be coordinated between cells within and between tissues. Therefore, how axes and polarities are coordinated between cells is a key question in biology. In animals, such coordination mainly depends on cell migration and direct interaction between proteins protruding from the plasma membrane. Both cell movements and direct cell–cell interactions are prevented in plants by cell walls that surround plant cells and keep them apart and in place. Therefore, plants have evolved unique mechanisms to coordinate their cell axes and polarities. Here I will discuss evidence suggesting that understanding how leaf veins form may uncover those unique mechanisms. Indeed, unlike previously thought, the cell-to-cell polar transport of the plant hormone auxin along developing veins cannot account for many features of vein patterning. Instead, those features can be accounted for by models of vein patterning that combine polar auxin transport with auxin diffusion through plasmodesmata along the axis of developing veins. Though it remains unclear whether such a combination of polar transport and axial diffusion of auxin can account for the formation of the variety of vein patterns found in plant leaves, evidence suggests that such a combined mechanism may control plant developmental processes beyond vein patterning.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3