Deep origin and gradual evolution of transporting tissues: Perspectives from across the land plants

Author:

Woudenberg Sjoerd1ORCID,Renema Jim23ORCID,Tomescu Alexandru M F4ORCID,De Rybel Bert23ORCID,Weijers Dolf1ORCID

Affiliation:

1. Laboratory of Biochemistry, Wageningen University , Wageningen, The Netherlands

2. Ghent University, Department of Plant Biotechnology and Bioinformatics , Ghent 9052, Belgium

3. VIB Center for Plant Systems Biology , Ghent 9052, Belgium

4. Department of Biological Sciences, California State Polytechnic University–Humboldt , Arcata, California 95521, USA

Abstract

Abstract The evolution of transporting tissues was an important innovation in terrestrial plants that allowed them to adapt to almost all nonaquatic environments. These tissues consist of water-conducting cells and food-conducting cells and bridge plant–soil and plant–air interfaces over long distances. The largest group of land plants, representing about 95% of all known plant species, is associated with morphologically complex transporting tissue in plants with a range of additional traits. Therefore, this entire clade was named tracheophytes, or vascular plants. However, some nonvascular plants possess conductive tissues that closely resemble vascular tissue in their organization, structure, and function. Recent molecular studies also point to a highly conserved toolbox of molecular regulators for transporting tissues. Here, we reflect on the distinguishing features of conductive and vascular tissues and their evolutionary history. Rather than sudden emergence of complex, vascular tissues, plant transporting tissues likely evolved gradually, building on pre-existing developmental mechanisms and genetic components. Improved knowledge of the intimate structure and developmental regulation of transporting tissues across the entire taxonomic breadth of extant plant lineages, combined with more comprehensive documentation of the fossil record of transporting tissues, is required for a full understanding of the evolutionary trajectory of transporting tissues.

Funder

Graduate School Experimental Plant Sciences

Research Foundation—Flanders (FWO

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3