The microRNA ppe-miR393 mediates auxin-induced peach fruit softening by promoting ethylene production

Author:

Ma Li1ORCID,Zhao Yingjie1ORCID,Chen Miaojin2,Li Yichen1ORCID,Shen Zhijun3,Cao Yang1,Wu Di145ORCID,Yu Mingliang3,Grierson Donald56ORCID,Shi Yanna145ORCID,Chen Kunsong145ORCID

Affiliation:

1. College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus , Hangzhou 310058 , China

2. Ningbo Fenghua District Peach Research Institute , Ningbo 315502 , China

3. Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Pomology, Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China

4. Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus , Hangzhou 310058 , China

5. State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus , Hangzhou 310058 , China

6. Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough LE12 5RD , UK

Abstract

Abstract Auxin can inhibit or promote fruit ripening, depending on the species. Melting flesh (MF) peach fruit (Prunus persica L. Batsch) cultivars produce high levels of ethylene caused by high concentrations of indole-3-acetic acid (IAA), which leads to rapid fruit softening at the late stage of development. In contrast, due to the low concentrations of IAA, the fruit of stony hard (SH) peach cultivars does not soften and produces little ethylene. Auxin seems necessary to trigger the biosynthesis of ethylene in peach fruit; however, the mechanism is not well understood. In this study, we identified miRNA gene family members ppe-miR393a and ppe-miR393b that are differentially expressed in SH and MF fruits. RNA ligase-mediated 5′ rapid amplification of cDNA ends and transient transformation of Nicotiana benthamiana revealed TRANSPORT INHIBITOR RESPONSE 1 (PpTIR1), part of the auxin perception and response system, as a target of ppe-miR393a and b. Yeast 2-hybrid assay and bimolecular fluorescence complementation assay revealed that PpTIR1 physically interacts with an Aux/IAA protein PpIAA13. The results of yeast 1-hybrid assay, electrophoretic mobility shift assay, and dual-luciferase assay indicated that PpIAA13 could directly bind to and trans-activate the promoter of 1-aminocyclopropane-1-carboxylic acid synthase 1 (PpACS1), required for ethylene biosynthesis. Transient overexpression and suppression of ppe-miR393a and PpIAA13 in peach fruit induced and repressed the expression of PpACS1, confirming their regulatory role in ethylene synthesis. Gene expression analysis in developing MF and SH fruits, combined with postharvest α-naphthalene acetic acid (NAA) treatment, supports a role for a ppe-miR393-PpTIR1-PpIAA13-PpACS1 module in regulating auxin-related differences in ethylene production and softening extent in different types of peach.

Funder

National Key Research and Development Program of China

Ningbo Key Research and Development Program

Zhejiang Provincial Cooperative Extension Project of Agricultural Key Technology

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3