Large root cortical cells and reduced cortical cell files improve growth under suboptimal nitrogen in silico

Author:

Lopez-Valdivia Ivan1ORCID,Yang Xiyu1ORCID,Lynch Jonathan P1ORCID

Affiliation:

1. Department of Plant Science, The Pennsylvania State University , University Park, PA 16802 , USA

Abstract

AbstractSuboptimal nitrogen availability is a primary constraint to plant growth. We used OpenSimRoot, a functional-structural plant/soil model, to test the hypothesis that larger root cortical cell size (CCS), reduced cortical cell file number (CCFN), and their interactions with root cortical aerenchyma (RCA) and lateral root branching density (LRBD) are useful adaptations to suboptimal soil nitrogen availability in maize (Zea mays). Reduced CCFN increased shoot dry weight over 80%. Reduced respiration, reduced nitrogen content, and reduced root diameter accounted for 23%, 20%, and 33% of increased shoot biomass, respectively. Large CCS increased shoot biomass by 24% compared with small CCS. When simulated independently, reduced respiration and reduced nutrient content increased the shoot biomass by 14% and 3%, respectively. However, increased root diameter resulting from large CCS decreased shoot biomass by 4% due to an increase in root metabolic cost. Under moderate N stress, integrated phenotypes with reduced CCFN, large CCS, and high RCA improved shoot biomass in silt loam and loamy sand soils. In contrast, integrated phenotypes composed of reduced CCFN, large CCS, and reduced LRBD had the greatest growth in silt loam, while phenotypes with reduced CCFN, large CCS, and high LRBD were the best performers in loamy sands. Our results support the hypothesis that larger CCS, reduced CCFN, and their interactions with RCA and LRBD could increase nitrogen acquisition by reducing root respiration and root nutrient demand. Phene synergisms may exist between CCS, CCFN, and LRBD. CCS and CCFN merit consideration for breeding cereal crops with improved nitrogen acquisition, which is critical for global food security.

Funder

Food and Agriculture Research

United States Department of Agriculture National Institute of Food and Agriculture Federal Appropriations

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference81 articles.

1. Integrated root phenotypes for improved rice performance under low nitrogen availability;Ajmera;Plant Cell Environ,2022

2. Response of roots to mechanical impedance;Atwell;Environ Exp Bot.,1993

3. Aerenchyma formation in roots of maize during sulphate starvation;Bouranis;Planta,2003

4. A case study on the efficacy of root phenotypic selection for edaphic stress tolerance in low-input agriculture: common bean breeding in Mozambique;Burridge;Field Crops Res.,2019

5. Rootscan: software for high-throughput analysis of root anatomical traits;Burton;Plant Soil.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3