A semi-dominant NLR allele causes whole-seedling necrosis in wheat

Author:

Jia Haiyan12ORCID,Xue Shulin12,Lei Lei1ORCID,Fan Min12,Peng Shuxia3ORCID,Li Tian1,Nagarajan Ragupathi1,Carver Brett1,Ma Zhengqiang2ORCID,Deng Junpeng3ORCID,Yan Liuling1

Affiliation:

1. Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA

2. Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China

3. Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA

Abstract

Abstract Programmed cell death (PCD) and apoptosis have key functions in development and disease resistance in diverse organisms; however, the induction of necrosis remains poorly understood. Here, we identified a semi-dominant mutant allele that causes the necrotic death of the entire seedling (DES) of wheat (Triticum aestivum L.) in the absence of any pathogen or external stimulus. Positional cloning of the lethal allele mDES1 revealed that this premature death via necrosis was caused by a point mutation from Asp to Asn at amino acid 441 in a nucleotide-binding leucine-rich repeat protein containing nucleotide-binding domain and leucine-rich repeats. The overexpression of mDES1 triggered necrosis and PCD in transgenic plants. However, transgenic wheat harboring truncated wild-type DES1 proteins produced through gene editing that exhibited no significant developmental defects. The point mutation in mDES1 did not cause changes in this protein in the oligomeric state, but mDES1 failed to interact with replication protein A leading to abnormal mitotic cell division. DES1 is an ortholog of Sr35, which recognizes a Puccinia graminis f. sp. tritici stem rust disease effector in wheat, but mDES1 gained function as a direct inducer of plant death. These findings shed light on the intersection of necrosis, apoptosis, and autoimmunity in plants.

Funder

Agriculture and Food Research Initiative Competitive

USDA National Institute of Food and Agriculture

Oklahoma Agricultural Experiment Station

111 Project

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3