Na+-preferential ion transporter HKT1;1 mediates salt tolerance in blueberry

Author:

Song Huifang1ORCID,Cao Yibo1ORCID,Zhao Xinyan1ORCID,Zhang Lingyun1ORCID

Affiliation:

1. State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University , Beijing 100083 , China

Abstract

Abstract Soil salinity is a major environmental factor constraining growth and productivity of highbush blueberry (Vaccinium corymbosum). Leaf Na+ content is associated with variation in salt tolerance among blueberry cultivars; however, the determinants and mechanisms conferring leaf Na+ exclusion are unknown. Here, we observed that the blueberry cultivar ‘Duke’ was more tolerant than ‘Sweetheart’ and accumulated less Na+ in leaves under salt stress conditions. Through transcript profiling, we identified a member of the high-affinity K+ transporter (HKT) family in blueberry, VcHKT1;1, as a candidate gene involved in leaf Na+ exclusion and salt tolerance. VcHKT1;1 encodes a Na+-preferential transporter localized to the plasma membrane and is preferentially expressed in the root stele. Heterologous expression of VcHKT1;1 in Arabidopsis (Arabidopsis thaliana) rescued the salt hypersensitivity phenotype of the athkt1 mutant. Decreased VcHKT1;1 transcript levels in blueberry plants expressing antisense-VcHKT1;1 led to increased Na+ concentrations in xylem sap and higher leaf Na+ contents compared with wild-type plants, indicating that VcHKT1;1 promotes leaf Na+ exclusion by retrieving Na+ from xylem sap. A naturally occurring 8-bp insertion in the promoter increased the transcription level of VcHKT1;1, thus promoting leaf Na+ exclusion and blueberry salt tolerance. Collectively, we provide evidence that VcHKT1;1 promotes leaf Na+ exclusion and propose natural variation in VcHKT1;1 will be valuable for breeding Na+-tolerant blueberry cultivars in the future.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MiR319a-mediated salt stress response in poplar;Horticulture Research;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3