Affiliation:
1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
2. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
3. Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
Abstract
Abstract
Strigolactones (SLs) are a recently identified class of phytohormones that regulate diverse developmental processes in land plants. However, the signaling mechanism of SLs in maize (Zea mays) remains largely unexplored. Here, we identified the maize gene DWARF 53 (ZmD53) and demonstrated that ZmD53 interacts with the SL receptors DWARF 14A/B (ZmD14A/B) in a rac-GR24-dependent manner. Transgenic maize plants expressing a gain-of-function mutant version of Zmd53 exhibited insensitivity to exogenous rac-GR24 treatment and a highly pleiotropic phenotype, including excess tillering and reduced tassel branching, indicating that ZmD53 functions as an authentic SL signaling repressor in maize. In addition, we showed that ZmD53 interacts with two homologous maize SPL transcription factors, UB3 and TSH4, and suppresses their transcriptional activation activity on TB1 to promote tillering. We also showed that UB2, UB3, and TSH4 can physically interact with each other and themselves, and that they can directly regulate the expression of TSH4, thus forming a positive feedback loop. Furthermore, we demonstrated that ZmD53 can repress the transcriptional activation activity of UB3 and TSH4 on their own promoters, thus decreasing tassel branch number. Our results reveal new insights into the integration of SL signaling and the miR156/SPL molecular module to coordinately regulate maize development.
Funder
National Natural Science Foundation of China
National Natural Science Foundation of China–Guangdong Province Joint Program
Natural Science Foundation of Guangdong Province-Guangzhou City Collaborative Key Project
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献