PHYTOCHROME-INTERACTING FACTOR 4/HEMERA-mediated thermosensory growth requires the Mediator subunit MED14

Author:

Bajracharya Abhishesh1ORCID,Xi Jing2ORCID,Grace Karlie F1,Bayer Eden E1,Grant Chloe A1,Clutton Caroline H1ORCID,Baerson Scott R2ORCID,Agarwal Ameeta K34ORCID,Qiu Yongjian1ORCID

Affiliation:

1. Department of Biology, University of Mississippi , Oxford, Mississippi 38677, USA

2. Natural Products Utilization Research Unit, U.S. Department of Agriculture, Agricultural Research Service , Oxford, Mississippi, USA

3. National Center for Natural Products Research, School of Pharmacy, University of Mississippi , Oxford, Mississippi, USA

4. Division of Pharmacology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi , Oxford, Mississippi, USA

Abstract

Abstract While moderately elevated ambient temperatures do not trigger stress responses in plants, they do substantially stimulate the growth of specific organs through a process known as thermomorphogenesis. The basic helix–loop–helix transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) plays a central role in regulating thermomorphogenetic hypocotyl elongation in various plant species, including Arabidopsis (Arabidopsis thaliana). Although it is well known that PIF4 and its co-activator HEMERA (HMR) promote plant thermosensory growth by activating genes involved in the biosynthesis and signaling of the phytohormone auxin, the detailed molecular mechanism of such transcriptional activation is not clear. In this report, we investigated the role of the Mediator complex in the PIF4/HMR-mediated thermoresponsive gene expression. Through the characterization of various mutants of the Mediator complex, a tail subunit named MED14 was identified as an essential factor for thermomorphogenetic hypocotyl growth. MED14 was required for the thermal induction of PIF4 target genes but had a marginal effect on the levels of PIF4 and HMR. Further transcriptomic analyses confirmed that the expression of numerous PIF4/HMR-dependent, auxin-related genes required MED14 at warm temperatures. Moreover, PIF4 and HMR physically interacted with MED14 and both were indispensable for the association of MED14 with the promoters of these thermoresponsive genes. While PIF4 did not regulate MED14 levels, HMR was required for the transcript abundance of MED14. Taken together, these results unveil an important thermomorphogenetic mechanism, in which PIF4 and HMR recruit the Mediator complex to activate auxin-related growth-promoting genes when plants sense moderate increases in ambient temperature.

Funder

National Science Foundation

NSF

University of Mississippi

University of California at Riverside

National Institute of General Medical Sciences

NIGMS

National Institutes of Health

Institutional Development Award

NIH

Imaging Research Core of the Glycoscience Center of Research Excellence

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3