Shade triggers posttranscriptional PHYTOCHROME-INTERACTING FACTOR-dependent increases in H3K4 trimethylation

Author:

Calderon Robert H123ORCID,Dalton Jutta12,Zhang Yu124ORCID,Quail Peter H12ORCID

Affiliation:

1. Department of Plant and Microbial Biology, University of California , Berkeley, California, 94720, USA

2. Plant Gene Expression Center, Agriculture Research Service, US Department of Agriculture , Albany, California, 94710, USA

3. Department of Plant Physiology, Umeå Plant Science Centre, Umeå University , Umeå, 901 87, Sweden

4. US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory , Berkeley, California, 94720, USA

Abstract

Abstract The phytochrome (phy)-PHYTOCHROME-INTERACTING FACTOR (PIF) sensory module perceives and transduces light signals to direct target genes (DTGs), which then drive the adaptational responses in plant growth and development appropriate to the prevailing environment. These signals include the first exposure of etiolated seedlings to sunlight upon emergence from subterranean darkness and the change in color of the light that is filtered through, or reflected from, neighboring vegetation (“shade”). Previously, we identified three broad categories of rapidly signal-responsive genes: those repressed by light and conversely induced by shade; those repressed by light, but subsequently unresponsive to shade; and those responsive to shade only. Here, we investigate the potential role of epigenetic chromatin modifications in regulating these contrasting patterns of phy-PIF module-induced expression of DTGs in Arabidopsis (Arabidopsis thaliana). Using RNA-seq and ChIP-seq to determine time-resolved profiling of transcript and histone 3 lysine 4 trimethylation (H3K4me3) levels, respectively, we show that, whereas the initial dark-to-light transition triggers a rapid, apparently temporally coincident decline of both parameters, the light-to-shade transition induces similarly rapid increases in transcript levels that precede increases in H3K4me3 levels. Together with other recent findings, these data raise the possibility that, rather than being causal in the shade-induced expression changes, H3K4me3 may function to buffer the rapidly fluctuating shade/light switching that is intrinsic to vegetational canopies under natural sunlight conditions.

Funder

National Institutes of Health

US Department of Agriculture Agricultural Research Service Current Research Information System

US Department of Agriculture NIFA-AFRI postdoctoral fellowship

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3