WRKY63 transcriptional activation of COOLAIR and COLDAIR regulates vernalization-induced flowering

Author:

Hung Fu-Yu1ORCID,Shih Yuan-Hsin1ORCID,Lin Pei-Yu1ORCID,Feng Yun-Ru1ORCID,Li Chenlong2ORCID,Wu Keqiang1ORCID

Affiliation:

1. Institute of Plant Biology, National Taiwan University , Taipei 10617, Taiwan

2. State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University , Guangzhou 510275, China

Abstract

Abstract Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS C (FLC) acts as a key flowering regulator by repressing the expression of the floral integrator FLOWERING LOCUS T (FT). Prolonged exposure to cold (vernalization) induces flowering by reducing FLC expression. The long noncoding RNAs (lncRNAs) COOLAIR and COLDAIR, which are transcribed from the 3′ end and the first intron of FLC, respectively, are important for FLC repression under vernalization. However, the molecular mechanism of how COOLAIR and COLDAIR are transcriptionally activated remains elusive. In this study, we found that the group-III WRKY transcription factor WRKY63 can directly activate FLC. wrky63 mutant plants display an early flowering phenotype and are insensitive to vernalization. Interestingly, we found that WRKY63 can activate the expression of COOLAIR and COLDAIR by binding to their promoters.WRKY63 therefore acts as a dual regulator that activates FLC directly under non-vernalization conditions but represses FLC indirectly during vernalization through inducing COOLAIR and COLDAIR. Furthermore, genome-wide occupancy profile analyses indicated that the binding of WRKY63 to vernalization-induced genes increases after vernalization. In addition, WRKY63 binding is associated with decreased levels of the repressive marker Histone H3 Lysine 27 trimethylation (H3K27me3). Collectively, our results indicate that WRKY63 is an important flowering regulator involved in vernalization-induced transcriptional regulation.

Funder

Ministry of Science and Technology of the Republic of China

National Taiwan University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3