microRNA408 and its encoded peptide regulate sulfur assimilation and arsenic stress response in Arabidopsis

Author:

Kumar Ravi Shankar12,Sinha Hiteshwari12,Datta Tapasya3,Asif Mehar Hasan12ORCID,Trivedi Prabodh Kumar123ORCID

Affiliation:

1. CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg , Lucknow 226001 , India

2. Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad 201002 , India

3. CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) , Lucknow 226015 , India

Abstract

Abstract MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in regulating various developmental and biological processes. The expression of miRNAs is differentially modulated in response to various biotic and abiotic stresses. Recent findings have shown that some pri-miRNAs encode small regulatory peptides known as microRNA-encoded peptides (miPEPs). miPEPs regulate the growth and development of plants by modulating corresponding miRNA expression; however, the role of these peptides under different stress conditions remains unexplored. Here, we report that pri-miR408 encodes a small peptide, miPEP408, that regulates the expression of miR408, its targets, and associated phenotype in Arabidopsis. We also report that miR408, apart from Plantacyanin (ARPN) and Laccase3 (LAC3), targets a glutathione S-transferase (GSTU25) that plays a role in sulfur assimilation and exhibits a range of detoxification activities with the environmental pollutant. Plants overexpressing miR408 showed severe sensitivity under low sulfur (LS), arsenite As(III), and LS + As(III) stress, while miR408 mutants developed using the CRISPR/Cas9 approach showed tolerance. Transgenic lines showed phenotypic alteration and modulation in the expression of genes involved in the sulfur reduction pathway and affect sulfate and glutathione accumulation. Similar to miR408 overexpressing lines, the exogenous application of synthetic miPEP408 and miPEP408OX lines led to sensitivity in plants under LS, As(III), and combined LS + As(III) stress compared to the control. This study suggests the involvement of miR408 and miPEP408 in heavy metal and nutrient deficiency responses through modulation of the sulfur assimilation pathway.

Funder

Council of Scientific and Industrial Research

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3