STRONG STAYGREEN inhibits DNA binding of PvNAP transcription factors during leaf senescence in switchgrass

Author:

Xie Zheni1ORCID,Yu Guohui1ORCID,Lei Shanshan1,Wang Hui2ORCID,Xu Bin1ORCID

Affiliation:

1. College of Agro-grassland Science, Nanjing Agricultural University , Nanjing, 210095, China

2. College of Grassland Science and Technology, China Agricultural University , Beijing, 100193, China

Abstract

Abstract Fine tuning the progression of leaf senescence is important for plant fitness in nature, while the “staygreen” phenotype with delayed leaf senescence has been considered a valuable agronomic trait in crop genetic improvement. In this study, a switchgrass (Panicum virgatum L.) CCCH-type Zinc finger gene, Strong Staygreen (PvSSG), was characterized as a suppressor of leaf senescence as overexpression or suppression of the gene led to delayed or accelerated leaf senescence, respectively. Transcriptomic analysis marked that chlorophyll (Chl) catabolic pathway genes were involved in the PvSSG-regulated leaf senescence. PvSSG was identified as a nucleus-localized protein with no transcriptional activity. By yeast two-hybrid screening, we identified its interacting proteins, including a pair of paralogous transcription factors, PvNAP1/2 (NAC-LIKE, ACTIVATED BY AP3/PI). Overexpression of PvNAPs led to precocious leaf senescence at least partially by directly targeting and transactivating Chl catabolic genes to promote Chl degradation. PvSSG, through protein–protein interaction, repressed the DNA-binding efficiency of PvNAPs and alleviated its transactivating effect on downstream genes, thereby functioning as a “brake” in the progression of leaf senescence. Moreover, overexpression of PvSSG resulted in up to 47% higher biomass yield and improved biomass feedstock quality, reiterating the importance of leaf senescence regulation in the genetic improvement of switchgrass and other feedstock crops.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3