XAP5 CIRCADIAN TIMEKEEPER regulates RNA splicing and the circadian clock by genetically separable pathways

Author:

Zhang Hongtao1ORCID,Kumimoto Roderick W1ORCID,Anver Shajahan12ORCID,Harmer Stacey L1ORCID

Affiliation:

1. Department of Plant Biology, College of Biological Sciences, University of California , Davis, CA 95616 , USA

2. Department of Genetics, Evolution and Environment, University College London , London WC1E 6BT , UK

Abstract

Abstract The circadian oscillator allows organisms to synchronize their cellular and physiological activities with diurnal environmental changes. In plants, the circadian clock is primarily composed of multiple transcriptional–translational feedback loops. Regulators of post-transcriptional events, such as precursor messenger RNAs (pre-mRNA) splicing factors, are also involved in controlling the pace of the clock. However, in most cases the underlying mechanisms remain unclear. We have previously identified XAP5 CIRCADIAN TIMEKEEPER (XCT) as an Arabidopsis thaliana circadian clock regulator with uncharacterized molecular functions. Here, we report that XCT physically interacts with components of the spliceosome, including members of the Nineteen Complex (NTC). PacBio Iso-Seq data show that xct mutants have transcriptome-wide pre-mRNA splicing defects, predominantly aberrant 3′ splice site selection. Expression of a genomic copy of XCT fully rescues those splicing defects, demonstrating that functional XCT is important for splicing. Dawn-expressed genes are significantly enriched among those aberrantly spliced in xct mutants, suggesting that the splicing activity of XCT may be circadian regulated. Furthermore, we show that loss-of-function mutations in PRP19A or PRP19B, 2 homologous core NTC components, suppress the short circadian period phenotype of xct-2. However, we do not see rescue of the splicing defects of core clock genes in prp19 xct mutants. Therefore, our results suggest that XCT may regulate splicing and the clock function through genetically separable pathways.

Funder

National Institutes of Health

United States Department of Agriculture

National Institute of Food and Agriculture

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3