Transcription factors GmERF1 and GmWRKY6 synergistically regulate low phosphorus tolerance in soybean

Author:

Wang Ruiyang1,Liu Xiaoqian2,Zhu Hongqing1,Yang Yuming1,Cui Ruifan1,Fan Yukun1,Zhai Xuhao1,Yang Yifei1,Zhang Shanshan1,Zhang Jinyu1,Hu Dandan1,Zhang Dan1

Affiliation:

1. Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University , Zhengzhou 450002 , China

2. Ministry of Agriculture and Rural Affairs Key Laboratory of Soybean Biology, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences , Beijing 100081 , China

Abstract

Abstract Soybean (Glycine max) is a major grain and oil crop worldwide, but low phosphorus (LP) in soil severely limits the development of soybean production. Dissecting the regulatory mechanism of the phosphorus (P) response is crucial for improving the P use efficiency of soybean. Here, we identified a transcription factor, GmERF1 (ethylene response factor 1), that is mainly expressed in soybean root and localized in the nucleus. Its expression is induced by LP stress and differs substantially in extreme genotypes. The genomic sequences of 559 soybean accessions suggested that the allelic variation of GmERF1 has undergone artificial selection, and its haplotype is significantly related to LP tolerance. GmERF1 knockout or RNA interference resulted in significant increases in root and P uptake efficiency traits, while the overexpression of GmERF1 produced an LP-sensitive phenotype and affected the expression of 6 LP stress-related genes. In addition, GmERF1 directly interacted with GmWRKY6 to inhibit transcription of GmPT5 (phosphate transporter 5), GmPT7, and GmPT8, which affects plant P uptake and use efficiency under LP stress. Taken together, our results show that GmERF1 can affect root development by regulating hormone levels, thus promoting P absorption in soybean, and provide a better understanding of the role of GmERF1 in soybean P signal transduction. The favorable haplotypes from wild soybean will be conducive to the molecular breeding of high P use efficiency in soybean.

Funder

National Natural Science Foundation of China

Major Science and Technology Project of Henan Province

Henan Fine Variety Joint Tackling Key Problems Project

Central Plains Talents Program Top Young Talents

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3