Affiliation:
1. College of Science and Engineering, University of Glasgow , Glasgow G12 8QQ, Scotland , UK
Abstract
Abstract
Environmental influences and differential growth subject plants to mechanical forces. Forces on the whole plant resolve into tensile forces on its primary cell walls and both tensile and compression forces on the secondary cell wall layers of woody tissues. Forces on cell walls are further resolved into forces on cellulose microfibrils and the noncellulosic polymers between them. Many external forces on plants oscillate, with time constants that vary from seconds to milliseconds. Sound waves are a high-frequency example. Forces on the cell wall lead to responses that direct the oriented deposition of cellulose microfibrils and the patterned expansion of the cell wall, leading to complex cell and tissue morphology.
Recent experiments have established many of the details of which cell wall polymers associate with one another in both primary and secondary cell walls, but questions remain about which of the interconnections are load bearing, especially in primary cell walls. Direct cellulose–cellulose interactions appear to have a more important mechanical role than was previously thought, and some of the noncellulosic polymers may have a role in keeping microfibrils apart rather than cross-linking them as formerly envisaged.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Structure and growth of plant cell walls;Nature Reviews Molecular Cell Biology;2023-12-15
2. Focus on cell walls;Plant Physiology;2023-10-11