Chromosome ends initiate homologous chromosome pairing during rice meiosis

Author:

You Hanli1ORCID,Tang Ding2ORCID,Liu Huixin2ORCID,Zhou Yue2ORCID,Li Yafei2ORCID,Shen Yi2,Gong Zhiyun1ORCID,Yu Hengxiu1ORCID,Gu Minghong1ORCID,Jiang Jiming3ORCID,Zhang Tao1ORCID,Cheng Zhukuan1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University , Yangzhou 225009 , China

2. State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences , 100101 Beijing , China

3. Department of Horticulture, Michigan State University , East Lansing, MI 48824 , USA

Abstract

Abstract During meiotic prophase I, chromosomes undergo large-scale dynamics to allow homologous chromosome pairing, prior to which chromosome ends attach to the inner nuclear envelope and form a chromosomal bouquet. Chromosome pairing is crucial for homologous recombination and accurate chromosome segregation during meiosis. However, the specific mechanism by which homologous chromosomes recognize each other is poorly understood. Here, we investigated the process of homologous chromosome pairing during early prophase I of meiosis in rice (Oryza sativa) using pooled oligo probes specific to an entire chromosome or chromosome arm. We revealed that chromosome pairing begins from both ends and extends toward the center from early zygotene through late zygotene. Genetic analysis of both trisomy and autotetraploidy also showed that pairing initiation is induced by both ends of a chromosome. However, healed ends that lack the original terminal regions on telocentric and acrocentric chromosomes cannot initiate homologous chromosome pairing, even though they may still enter the telomere clustering region at the bouquet stage. Furthermore, a chromosome that lacks the distal parts on both sides loses the ability to pair with other intact chromosomes. Thus, the native ends of chromosomes play a crucial role in initiating homologous chromosome pairing during meiosis and likely have a substantial impact on genome differentiation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3