The metabolic origins of non-photorespiratory CO2 release during photosynthesis: a metabolic flux analysis

Author:

Xu Yuan1,Fu Xinyu12,Sharkey Thomas D23ORCID,Shachar-Hill Yair1ORCID,Walker and Berkley J12ORCID

Affiliation:

1. Department of Plant Biology, Michigan State University, Michigan 48824, USA

2. Department of Energy-Plant Research Laboratory, Michigan State University, Michigan 48824, USA

3. Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824, USA

Abstract

Abstract Respiration in the light (RL) releases CO2 in photosynthesizing leaves and is a phenomenon that occurs independently from photorespiration. Since RL lowers net carbon fixation, understanding RL could help improve plant carbon-use efficiency and models of crop photosynthesis. Although RL was identified more than 75 years ago, its biochemical mechanisms remain unclear. To identify reactions contributing to RL, we mapped metabolic fluxes in photosynthesizing source leaves of the oilseed crop and model plant camelina (Camelina sativa). We performed a flux analysis using isotopic labeling patterns of central metabolites during 13CO2 labeling time course, gas exchange, and carbohydrate production rate experiments. To quantify the contributions of multiple potential CO2 sources with statistical and biological confidence, we increased the number of metabolites measured and reduced biological and technical heterogeneity by using single mature source leaves and quickly quenching metabolism by directly injecting liquid N2; we then compared the goodness-of-fit between these data and data from models with alternative metabolic network structures and constraints. Our analysis predicted that RL releases 5.2 μmol CO2 g−1 FW h−1 of CO2, which is relatively consistent with a value of 9.3 μmol CO2 g−1 FW h−1 measured by CO2 gas exchange. The results indicated that ≤10% of RL results from TCA cycle reactions, which are widely considered to dominate RL. Further analysis of the results indicated that oxidation of glucose-6-phosphate to pentose phosphate via 6-phosphogluconate (the G6P/OPP shunt) can account for >93% of CO2 released by RL.

Funder

Division of Chemical Sciences

Geosciences and Biosciences

Office of Basic Energy Sciences of the United States Department of Energy

Michigan AgBioResearch

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3