Gene expression and metabolite levels converge in the thermogenic spadix of skunk cabbage

Author:

Tanimoto Haruka1ORCID,Umekawa Yui2ORCID,Takahashi Hideyuki3ORCID,Goto Kota4ORCID,Ito Kikukatsu14ORCID

Affiliation:

1. United Graduate School of Agricultural Science, Iwate University , Morioka, Iwate 020-8550 , Japan

2. Department of Planning and General Affairs, Akita Research Institute of Food and Brewing , Araya-machi, Akita 010-1623 , Japan

3. Department of Agriculture, School of Agriculture, Tokai University , Kumamoto 862-8652 , Japan

4. Faculty of Agriculture, Iwate University , Morioka, Iwate 020-8550 , Japan

Abstract

Abstract The inflorescence (spadix) of skunk cabbage (Symplocarpus renifolius) is strongly thermogenic and can regulate its temperature at around 23 °C even when the ambient temperature drops below freezing. To elucidate the mechanisms underlying developmentally controlled thermogenesis and thermoregulation in skunk cabbage, we conducted a comprehensive transcriptome and metabolome analysis across 3 developmental stages of spadix development. Our RNA-seq analysis revealed distinct groups of expressed genes, with selenium-binding protein 1/methanethiol oxidase (SBP1/MTO) exhibiting the highest levels in thermogenic florets. Notably, the expression of alternative oxidase (AOX) was consistently high from the prethermogenic stage through the thermogenic stage in the florets. Metabolome analysis showed that alterations in nucleotide levels correspond with the developmentally controlled and tissue-specific thermogenesis of skunk cabbage, evident by a substantial increase in AMP levels in thermogenic florets. Our study also reveals that hydrogen sulfide, a product of SBP1/MTO, inhibits cytochrome c oxidase (COX)-mediated mitochondrial respiration, while AOX-mediated respiration remains relatively unaffected. Specifically, at lower temperatures, the inhibitory effect of hydrogen sulfide on COX-mediated respiration increases, promoting a shift toward the dominance of AOX-mediated respiration. Finally, despite the differential regulation of genes and metabolites throughout spadix development, we observed a convergence of gene expression and metabolite accumulation patterns during thermogenesis. This synchrony may play a key role in developmentally regulated thermogenesis. Moreover, such convergence during the thermogenic stage in the spadix may provide a solid molecular basis for thermoregulation in skunk cabbage.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3