Affiliation:
1. Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
2. Institute for Hygiene, UKM Münster, Münster, Germany
Abstract
Abstract
Background and objectives
The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to effectively prevent and alleviate intestinal diseases. Despite the widespread medical application of EcN, we still lack basic knowledge about persistence and evolution of EcN outside the human body. Such knowledge is important also for public health aspects, as in contrast to abiotic therapeutics, probiotics are living organisms that have the potential to evolve. This study made use of experimental evolution of EcN in an insect host, the red flour beetle Tribolium castaneum, and its flour environment.
Methodology
Using a serial passage approach, we orally introduced EcN to larvae of T.castaneum as a new host, and also propagated it in the flour environment. After eight propagation cycles, we analyzed phenotypic attributes of the passaged replicate EcN lines, their effects on the host in the context of immunity and infection with the entomopathogen Bacillus thuringiensis, and potential genomic changes using WGS of three of the evolved lines.
Results
We observed weak phenotypic differences between the ancestral EcN and both, beetle and flour passaged EcN lines, in motility and growth at 30°C, but neither any genetic changes, nor the expected increased persistence of the beetle-passaged lines. One of these lines displayed distinct morphological and physiological characteristics.
Conclusions and implications
Our findings suggest that EcN remains rather stable during serial passage in an insect. Weak phenotypic changes in growth and motility combined with a lack of genetic changes indicate a certain degree of phenotypic plasticity of EcN.
Lay Summary
For studying adaptation of the human probiotic Escherichia coli strain Nissle 1917, we introduced it to a novel insect host system and its environment using a serial passage approach. After passage, we observed weak phenotypic changes in growth and motility but no mutations or changes in persistence inside the host.
Funder
Deutsche Forschungsgemeinschaft (DFG
Research Training Group 2220 “Evolutionary Processes in Adaptation and Disease” at the University of Münster
Publisher
Oxford University Press (OUP)
Subject
Health, Toxicology and Mutagenesis,Ecology, Evolution, Behavior and Systematics,Medicine (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献