Hymenolepis diminuta-based helminth therapy in C3(1)-TAg mice does not alter breast tumor onset or progression

Author:

Sauer Scott1,Beinart Dylan1,Finn Sade M B1,Kumar Sereena L1,Cheng Qing1,Hwang Shelley E1,Parker William1ORCID,Devi Gayathri R1

Affiliation:

1. Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA

Abstract

Abstract Background and objectives An individual’s risk of breast cancer is profoundly affected by evolutionary mismatch. Mismatches in Western society known to increase the risk of breast cancer include a sedentary lifestyle and reproductive factors. Biota alteration, characterized by a loss of biodiversity from the ecosystem of the human body as a result of Western society, is a mismatch known to increase the risk of a variety of inflammation-related diseases, including colitis-associated colon cancer. However, the effect of biota alteration on breast cancer has not been evaluated. Methodology In this study, we utilized the C3(1)-TAg mouse model of breast cancer to evaluate the role of biota alteration in the development of breast cancer. This model has been used to recapitulate the role of exercise and pregnancy in reducing the risk of breast cancer. C3(1)-TAg mice were treated with Hymenolepis diminuta, a benign helminth that has been shown to reverse the effects of biota alteration in animal models. Results No effect of the helminth H. diminuta was observed. Neither the latency nor tumor growth was affected by the therapy, and no significant effects on tumor transcriptome were observed based on RNAseq analysis. Conclusions and implications These findings suggest that biota alteration, although known to affect a variety of Western-associated diseases, might not be a significant factor in the high rate of breast cancer observed in Western societies. Lay summary An almost complete loss of intestinal worms in high-income countries has led to increases in allergic disorders, autoimmune conditions, and perhaps colon cancer. However, in this study, results using laboratory mice suggest that loss of intestinal worms might not be associated with breast cancer.

Funder

National Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Ecology, Evolution, Behavior and Systematics,Medicine (miscellaneous)

Reference66 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3