Radiomics-clinical nomogram for preoperative lymph node metastasis prediction in esophageal carcinoma

Author:

Geng Xiaotao12,Zhang Yaping3,Li Yang2,Cai Yuanyuan2,Liu Jie2,Geng Tianxiang4,Meng Xiangdi2,Hao Furong2ORCID

Affiliation:

1. Shandong University Cancer Center, Shandong University , 440 Jiyan Road , Jinan, 250117, China

2. Department of Radiation Oncology, Weifang People’s Hospital , 151 Guangwen Street , Weifang, 261000, China

3. Department of Radiology, Weifang People’s Hospital , 151 Guangwen Street , Weifang, 261000, China

4. Department of Biomaterials, Faculty of Dentistry, University of Oslo , Oslo, 0455, Norway

Abstract

Abstract Objectives This research aimed to develop a radiomics-clinical nomogram based on enhanced thin-section CT radiomics and clinical features for the purpose of predicting the presence or absence of metastasis in lymph nodes among patients with resectable esophageal squamous cell carcinoma (ESCC). Methods This study examined the data of 256 patients with ESCC, including 140 cases with lymph node metastasis. Clinical information was gathered for each case, and radiomics features were derived from thin-section contrast-enhanced CT with the help of a 3D slicer. To validate risk factors that are independent of the clinical and radiomics models, least absolute shrinkage and selection operator logistic regression analysis was used. A nomogram pattern was constructed based on the radiomics features and clinical characteristics. The receiver operating characteristic curve and Brier Score were used to evaluate the model's discriminatory ability, the calibration plot to evaluate the model's calibration, and the decision curve analysis to evaluate the model’s clinical utility. The confusion matrix was used to evaluate the applicability of the model. To evaluate the efficacy of the model, 1000 rounds of 5-fold cross-validation were conducted. Results The clinical model identified esophageal wall thickness and clinical T (cT) stage as independent risk factors, whereas the radiomics pattern was built based on 4 radiomics features chosen at random. Area under the curve (AUC) values of 0.684 and 0.701 are observed for the radiomics approach and clinical model, respectively. The AUC of nomogram combining radiomics and clinical features was 0.711. The calibration plot showed good agreement between the incidence of lymph node metastasis predicted by the nomogram and the actual probability of occurrence. The nomogram model displayed acceptable levels of performance. After 1000 rounds of 5-fold cross-validation, the AUC and Brier score had median values of 0.702 (IQR: 0.65, 7.49) and 0.21 (IQR: 0.20, 0.23), respectively. High-risk patients (risk point >110) were found to have an increased risk of lymph node metastasis [odds ratio (OR) = 5.15, 95% CI, 2.95-8.99] based on the risk categorization. Conclusion A successful preoperative prediction performance for metastasis to the lymph nodes among patients with ESCC was demonstrated by the nomogram that incorporated CT radiomics, wall thickness, and cT stage. Advances in knowledge This study demonstrates a novel radiomics-clinical nomogram for lymph node metastasis prediction in ESCC, which helps physicians determine lymph node status preoperatively.

Funder

Science and Technology Development Project of Weifang City

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3