AI in imaging: the regulatory landscape

Author:

Hill Derek L G1ORCID

Affiliation:

1. UCL , Gower Street , London, WC1E 6BT, United Kingdom

Abstract

Abstract Artificial intelligence (AI) methods have been applied to medical imaging for several decades, but in the last few years, the number of publications and the number of AI-enabled medical devices coming on the market have significantly increased. While some AI-enabled approaches are proving very valuable, systematic reviews of the AI imaging field identify significant weaknesses in a significant proportion of the literature. Medical device regulators have recently become more proactive in publishing guidance documents and recognizing standards that will require that the development and validation of AI-enabled medical devices need to be more rigorous than required for tradition “rule-based” software. In particular, developers are required to better identify and mitigate risks (such as bias) that arise in AI-enabled devices, and to ensure that the devices are validated in a realistic clinical setting to ensure their output is clinically meaningful. While this evolving regulatory landscape will mean that device developers will take longer to bring novel AI-based medical imaging devices to market, such additional rigour is necessary to address existing weaknesses in the field and ensure that patients and healthcare professionals can trust AI-enabled devices. There would also be benefits in the academic community taking into account this regulatory framework, to improve the quality of the literature and make it easier for academically developed AI tools to make the transition to medical devices that impact healthcare.

Publisher

Oxford University Press (OUP)

Reference35 articles.

1. Artificial intelligence in radiology: decision support systems;Kahn;Radiographics,1994

2. Artificial intelligence: its use in medical diagnosis;Scott;J Nucl Med,1993

3. AAAI 1994 Spring Symposium Series Reports;Woods;AI Mag,1994

4. FDA-cleared artificial intelligence and machine learning-based medical devices and their 510(k) predicate networks;Muehlematter;Lancet Digit Health,2023

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3