Determination of p53abn endometrial cancer: a multitask analysis using radiological-clinical nomogram on MRI

Author:

Ning Yan1,Liu Wei2,Wang Haijie3,Zhang Feiran1,Chen Xiaojun2,Wang Yida3,Wang Tianping4,Yang Guang3,Zhang He4ORCID

Affiliation:

1. Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University , Shanghai, 200011, China

2. Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University , Shanghai, 200011, China

3. Shanghai Key Laboratory of Magnetic Resonance, East China Normal University , Shanghai, 200062, China

4. Department of Radiology, Obstetrics and Gynecology Hospital, Fudan University , Shanghai, 200011, China

Abstract

Abstract Objectives We aimed to differentiate endometrial cancer (EC) between TP53mutation (P53abn) and Non-P53abn subtypes using radiological-clinical nomogram on EC body volume MRI. Methods We retrospectively recruited 227 patients with pathologically proven EC from our institution. All these patients have undergone molecular pathology diagnosis based on the Cancer Genome Atlas. Clinical characteristics and histological diagnosis were recorded from the hospital information system. Radiomics features were extracted from online Pyradiomics processors. The diagnostic performance across different acquisition protocols was calculated and compared. The radiological-clinical nomogram was established to determine the nonendometrioid, high-risk, and P53abn EC group. Results The best MRI sequence for differentiation P53abn from the non-P53abn group was contrast-enhanced T1WI (test AUC: 0.8). The best MRI sequence both for differentiation endometrioid cancer from nonendometrioid cancer and high-risk from low- and intermediate-risk groups was apparent diffusion coefficient map (test AUC: 0.665 and 0.690). For all 3 tasks, the combined model incorporating all the best discriminative features from each sequence yielded the best performance. The combined model achieved an AUC of 0.845 in the testing cohorts for P53abn cancer identification. The MR-based radiomics diagnostic model performed better than the clinical-based model in determining P53abn EC (AUC: 0.834 vs 0.682). Conclusion In the present study, the diagnostic model based on the combination of both radiomics and clinical features yielded a higher performance in differentiating nonendometrioid and P53abn cancer from other EC molecular subgroups, which might help design a tailed treatment, especially for patients with high-risk EC. Advances in knowledge (1) The contrast-enhanced T1WI was the best MRI sequence for differentiation P53abn from the non-P53abn group (test AUC: 0.8). (2) The radiomics-based diagnostic model performed better than the clinical-based model in determining P53abn EC (AUC: 0.834 vs 0.682). (3) The proposed model derived from multi-parametric MRI images achieved a higher accuracy in P53abn EC identification (AUC: 0.845).

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Open Project of Shanghai Key Laboratory of Magnetic Resonance

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3