Feasibility of a portable respiratory training system with a gyroscope sensor

Author:

Nitta Yuya1,Ueda Yoshihiro1ORCID,Ohira Shingo2,Isono Masaru1,Hirose Asako1,Inui Shoki1,Murata Seiya1,Minami Hikari1,Sagawa Tomohiro1,Nagayasu Yukari1,Miyazaki Masayoshi1,Konishi Koji1

Affiliation:

1. Department of Radiation Oncology, Osaka International Cancer Institute , Osaka 541-8567, Japan

2. Department of Comprehensive Radiation Oncology, The University of Tokyo , Tokyo 113-8655, Japan

Abstract

Abstract Objectives A portable respiratory training system with a gyroscope sensor (gyroscope respiratory training system [GRTS]) was developed and the feasibility of respiratory training was evaluated. Methods Simulated respiratory waveforms from a respiratory motion phantom and actual respirator waveforms from volunteers were acquired using the GRTS and Respiratory Gating for Scanners system (RGSC). Respiratory training was evaluated by comparing the stability and reproducibility of respiratory waveforms from patients undergoing expiratory breath-hold radiation therapy, with and without the GRTS. The stability and reproducibility of respiratory waveforms were assessed by root mean square error and gold marker placement-based success rate of expiratory breath-hold, respectively. Results The absolute mean difference for sinusoidal waveforms between the GRTS and RGSC was 2.0%. Among volunteers, the mean percentages of errors within ±15% of the respiratory waveforms acquired by the GRTS and RGSC were 96.1% for free breathing and 88.2% for expiratory breath-hold. The mean root mean square error and success rate of expiratory breath-hold (standard deviation) with and without the GRTS were 0.65 (0.24) and 0.88 (0.89) cm and 91.0% (6.9) and 89.1% (11.6), respectively. Conclusions Respiratory waveforms acquired by the GRTS exhibit good agreement with waveforms acquired by the RGSC. Respiratory training with the GRTS reduces inter-patient variability in respiratory waveforms, thereby improving the success of expiratory breath-hold radiation therapy. Advances in knowledge A respiratory training system with a gyroscope sensor is inexpensive and portable, making it ideal for respiratory training. This is the first report concerning clinical implementation of a respiratory training system.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3