Brown Rice Inhibits Development of Nonalcoholic Fatty Liver Disease in Obese Zucker (fa/fa) Rats by Increasing Lipid Oxidation Via Activation of Retinoic Acid Synthesis

Author:

Matsumoto Yu1,Fujita Saya1,Yamagishi Ayano1,Shirai Tomomi1,Maeda Yukie2,Suzuki Tsukasa1,Kobayashi Ken-ichi13,Inoue Jun1,Yamamoto Yuji1

Affiliation:

1. Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan

2. Alpha Food Co. Ltd., Shimane, Japan

3. Department of Foods and Human Nutrition, Faculty of Human Living Sciences Notre Dame Seishin University, Okayama, Japan

Abstract

ABSTRACT Background White rice and its unrefined form, brown rice, contain numerous compounds that are beneficial to human health. However, the starch content of rice can contribute to obesity, a main risk factor for nonalcoholic fatty liver disease (NAFLD). Objectives We investigated the effect of rice consumption on NAFLD and its underlying molecular mechanism. Methods We randomly divided 7-week-old male obese Zucker (fa/fa) rats, an animal model of NAFLD, into 3 groups (n = 10 each) fed 1 of 3 diets for 10 weeks: a control diet (Cont; AIN-93G diet; 53% cornstarch), a white rice diet (WR; AIN-93G diet with cornstarch replaced with white rice powder), or a brown rice diet (BR; AIN-93G diet with cornstarch replaced with brown rice powder). Liver fat accumulation and gene expression related to lipid and vitamin A metabolisms, including retinoic acid (RA) signaling, were analyzed. Results Hepatic lipid values were significantly decreased in the BR group compared with the Cont group, by 0.4-fold (P < 0.05). The expression of genes related to hepatic fatty acid oxidation, such as carnitine palmitoyltransferase 2, was approximately 2.1-fold higher in the BR group than the Cont group (P < 0.05). The expression of peroxisomal acyl-coenzyme A oxidase 1 and acyl-CoA dehydrogenase medium chain was also significantly increased, by 1.6-fold, in the BR group compared with the Cont group (P < 0.05). The expression of VLDL-secretion-related genes, such as microsomal triglyceride transfer protein, was also significantly higher in the BR group (2.4-fold; P < 0.05). Furthermore, aldehyde dehydrogenase 1 family member A1, an RA synthase gene, was 2-fold higher in the BR group than the Cont group (P < 0.05). Conclusions Brown rice prevented development of NAFLD in obese Zucker (fa/fa) rats. The beneficial effects of pregelatinized rice on NAFLD could be manifested as increased fatty acid oxidation and VLDL secretion, which are regulated by RA signaling.

Funder

Tojuro Iijima Foundation for Food Science and Technology

Alpha Food Co., Ltd.

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3