High-dimensional sparse vine copula regression with application to genomic prediction

Author:

Sahin Özge12ORCID,Czado Claudia13

Affiliation:

1. Department of Mathematics, Technical University of Munich , Boltzmannstraße 3, 85748 Garching , Germany

2. Delft Institute of Applied Mathematics, Delft University of Technology , Mekelweg 4, 2628 CD, Delft , The Netherlands

3. Munich Data Science Institute , Walther-von-Dyck-Straße 10, 85748 Garching , Germany

Abstract

Abstract High-dimensional data sets are often available in genome-enabled predictions. Such data sets include nonlinear relationships with complex dependence structures. For such situations, vine copula-based (quantile) regression is an important tool. However, the current vine copula-based regression approaches do not scale up to high and ultra-high dimensions. To perform high-dimensional sparse vine copula-based regression, we propose 2 methods. First, we show their superiority regarding computational complexity over the existing methods. Second, we define relevant, irrelevant, and redundant explanatory variables for quantile regression. Then, we show our method’s power in selecting relevant variables and prediction accuracy in high-dimensional sparse data sets via simulation studies. Next, we apply the proposed methods to the high-dimensional real data, aiming at the genomic prediction of maize traits. Some data processing and feature extraction steps for the real data are further discussed. Finally, we show the advantage of our methods over linear models and quantile regression forests in simulation studies and real data applications.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Reference20 articles.

1. Pair-copula constructions of multiple dependence;Aas;Insurance: Mathematics and Economics,2009

2. Vines—a new graphical model for dependent random variables;Bedford;The Annals of Statistics,2002

3. L1-penalized quantile regression in high-dimensional sparse models;Belloni;The Annals of Statistics,2011

4. Truncated and simplified regular vines and their applications;Brechmann,2010

5. Quantile regression neural networks: implementation in R and application to precipitation downscaling;Cannon;Computers & Geosciences,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3