Homogeneity pursuit and variable selection in regression models for multivariate abundance data

Author:

Hui Francis K C1ORCID,Maestrini Luca1,Welsh Alan H1

Affiliation:

1. Research School of Finance, Actuarial Studies and Statistics, Australian National University , Canberra, ACT 2601 , Australia

Abstract

ABSTRACT When building regression models for multivariate abundance data in ecology, it is important to allow for the fact that the species are correlated with each other. Moreover, there is often evidence species exhibit some degree of homogeneity in their responses to each environmental predictor, and that most species are informed by only a subset of predictors. We propose a generalized estimating equation (GEE) approach for simultaneous homogeneity pursuit (ie, grouping species with similar coefficient values while allowing differing groups for different covariates) and variable selection in regression models for multivariate abundance data. Using GEEs allows us to straightforwardly account for between-response correlations through a (reduced-rank) working correlation matrix. We augment the GEE with both adaptive fused lasso- and adaptive lasso-type penalties, which aim to cluster the species-specific coefficients within each covariate and encourage differing levels of sparsity across the covariates, respectively. Numerical studies demonstrate the strong finite sample performance of the proposed method relative to several existing approaches for modeling multivariate abundance data. Applying the proposed method to presence–absence records collected along the Great Barrier Reef in Australia reveals both a substantial degree of homogeneity and sparsity in species-environmental relationships. We show this leads to a more parsimonious model for understanding the environmental drivers of seabed biodiversity, and results in stronger out-of-sample predictive performance relative to methods that do not accommodate such features.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3