Unit information Dirichlet process prior

Author:

Gu Jiaqi1ORCID,Yin Guosheng2ORCID

Affiliation:

1. Department of Neurology and Neurological Sciences, Stanford University , Stanford, CA 94304 , United States

2. Department of Statistics and Actuarial Science, University of Hong Kong , Hong Kong, 999077 , China

Abstract

ABSTRACT Prior distributions, which represent one’s belief in the distributions of unknown parameters before observing the data, impact Bayesian inference in a critical and fundamental way. With the ability to incorporate external information from expert opinions or historical datasets, the priors, if specified appropriately, can improve the statistical efficiency of Bayesian inference. In survival analysis, based on the concept of unit information (UI) under parametric models, we propose the unit information Dirichlet process (UIDP) as a new class of nonparametric priors for the underlying distribution of time-to-event data. By deriving the Fisher information in terms of the differential of the cumulative hazard function, the UIDP prior is formulated to match its prior UI with the weighted average of UI in historical datasets and thus can utilize both parametric and nonparametric information provided by historical datasets. With a Markov chain Monte Carlo algorithm, simulations and real data analysis demonstrate that the UIDP prior can adaptively borrow historical information and improve statistical efficiency in survival analysis.

Funder

Research Grants Council of Hong Kong

Publisher

Oxford University Press (OUP)

Reference19 articles.

1. Nonparametric inference for a Family of counting processes;Aalen;The Annals of Statistics,1978

2. Modified power prior with multiple historical trials for binary endpoints;Banbeta;Statistics in Medicine,2019

3. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer;Borghaei;New England Journal of Medicine,2015

4. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer;Brahmer;New England Journal of Medicine,2015

5. Frequentist accuracy of Bayesian estimates;Efron;Journal of the Royal Statistical Society Series B: Statistical Methodology,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3