Affiliation:
1. Division of Biostatistics and Health Data Science, University of Minnesota , Minneapolis, MN 55414 , United States
Abstract
ABSTRACT
Statistical approaches that successfully combine multiple datasets are more powerful, efficient, and scientifically informative than separate analyses. To address variation architectures correctly and comprehensively for high-dimensional data across multiple sample sets (ie, cohorts), we propose multiple augmented reduced rank regression (maRRR), a flexible matrix regression and factorization method to concurrently learn both covariate-driven and auxiliary structured variations. We consider a structured nuclear norm objective that is motivated by random matrix theory, in which the regression or factorization terms may be shared or specific to any number of cohorts. Our framework subsumes several existing methods, such as reduced rank regression and unsupervised multimatrix factorization approaches, and includes a promising novel approach to regression and factorization of a single dataset (aRRR) as a special case. Simulations demonstrate substantial gains in power from combining multiple datasets, and from parsimoniously accounting for all structured variations. We apply maRRR to gene expression data from multiple cancer types (ie, pan-cancer) from The Cancer Genome Atlas, with somatic mutations as covariates. The method performs well with respect to prediction and imputation of held-out data, and provides new insights into mutation-driven and auxiliary variations that are shared or specific to certain cancer types.
Funder
National Institutes of Health
Publisher
Oxford University Press (OUP)