Nonparametric worst-case bounds for publication bias on the summary receiver operating characteristic curve

Author:

Zhou Yi1ORCID,Huang Ao2ORCID,Hattori Satoshi3ORCID

Affiliation:

1. Beijing International Center for Mathematical Research, Peking University , Beijing, 100871 , China

2. Department of Medical Statistics, University Medical Center Göttingen , Göttingen, 37073 , Germany

3. Department of Biomedical Statistics, Graduate School of Medicine, Institute for Open and Transdisciplinary Research Initiatives, Osaka University , Osaka, 565-0871 , Japan

Abstract

ABSTRACT The summary receiver operating characteristic (SROC) curve has been recommended as one important meta-analytical summary to represent the accuracy of a diagnostic test in the presence of heterogeneous cutoff values. However, selective publication of diagnostic studies for meta-analysis can induce publication bias (PB) on the estimate of the SROC curve. Several sensitivity analysis methods have been developed to quantify PB on the SROC curve, and all these methods utilize parametric selection functions to model the selective publication mechanism. The main contribution of this article is to propose a new sensitivity analysis approach that derives the worst-case bounds for the SROC curve by adopting nonparametric selection functions under minimal assumptions. The estimation procedures of the worst-case bounds use the Monte Carlo method to approximate the bias on the SROC curves along with the corresponding area under the curves, and then the maximum and minimum values of PB under a range of marginal selection probabilities are optimized by nonlinear programming. We apply the proposed method to real-world meta-analyses to show that the worst-case bounds of the SROC curves can provide useful insights for discussing the robustness of meta-analytical findings on diagnostic test accuracy.

Funder

Grant-in-Aid for Challenging Exploratory Research

Grant-in-Aid for Scientific Research

Publisher

Oxford University Press (OUP)

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3