Incorporating nonparametric methods for estimating causal excursion effects in mobile health with zero-inflated count outcomes

Author:

Liu Xueqing1,Qian Tianchen2,Bell Lauren34,Chakraborty Bibhas156ORCID

Affiliation:

1. Centre for Quantitative Medicine, Duke-NUS Medical School , Singapore, 169857 , Singapore

2. Department of Statistics, University of California, Irvine , Irvine, CA 92697 , United States

3. Medical Research Council Biostatistics Unit, University of Cambridge , Cambridge, CB2 0SR , United Kingdom

4. Department of Medical Statistics, The London School of Hygiene and Tropical Medicine , London, WC1E 7HT , United Kingdom

5. Department of Statistics and Data Science, National University of Singapore , Singapore, 117546 , Singapore

6. Department of Biostatistics and Bioinformatics, Duke University , Durham, NC 27710 , United States

Abstract

ABSTRACT In mobile health, tailoring interventions for real-time delivery is of paramount importance. Micro-randomized trials have emerged as the “gold-standard” methodology for developing such interventions. Analyzing data from these trials provides insights into the efficacy of interventions and the potential moderation by specific covariates. The “causal excursion effect,” a novel class of causal estimand, addresses these inquiries. Yet, existing research mainly focuses on continuous or binary data, leaving count data largely unexplored. The current work is motivated by the Drink Less micro-randomized trial from the UK, which focuses on a zero-inflated proximal outcome, i.e., the number of screen views in the subsequent hour following the intervention decision point. To be specific, we revisit the concept of causal excursion effect, specifically for zero-inflated count outcomes, and introduce novel estimation approaches that incorporate nonparametric techniques. Bidirectional asymptotics are established for the proposed estimators. Simulation studies are conducted to evaluate the performance of the proposed methods. As an illustration, we also implement these methods to the Drink Less trial data.

Funder

Duke-NUS Medical School

MRC

Ministry of Education, Singapore

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3