Affiliation:
1. Division of Biostatistics, University of California , Berkeley, CA 94720 , United States
2. Department of Biostatistics, University of Michigan , Ann Arbor, MI 48109 , United States
Abstract
ASTRACT
Brain-effective connectivity analysis quantifies directed influence of one neural element or region over another, and it is of great scientific interest to understand how effective connectivity pattern is affected by variations of subject conditions. Vector autoregression (VAR) is a useful tool for this type of problems. However, there is a paucity of solutions when there is measurement error, when there are multiple subjects, and when the focus is the inference of the transition matrix. In this article, we study the problem of transition matrix inference under the high-dimensional VAR model with measurement error and multiple subjects. We propose a simultaneous testing procedure, with three key components: a modified expectation-maximization (EM) algorithm, a test statistic based on the tensor regression of a bias-corrected estimator of the lagged auto-covariance given the covariates, and a properly thresholded simultaneous test. We establish the uniform consistency for the estimators of our modified EM, and show that the subsequent test achieves both a consistent false discovery control, and its power approaches one asymptotically. We demonstrate the efficacy of our method through both simulations and a brain connectivity study of task-evoked functional magnetic resonance imaging.
Publisher
Oxford University Press (OUP)