Efficient estimation for left-truncated competing risks regression for case-cohort studies

Author:

Fang Xi1,Ahn Kwang Woo1ORCID,Cai Jianwen2ORCID,Kim Soyoung1ORCID

Affiliation:

1. Division of Biostatistics, Medical College of Wisconsin , Milwaukee, WI 53226 , United States

2. Department of Biostatistics, University of North Carolina at Chapel Hill , NC 27599 , United States

Abstract

Abstract The case-cohort study design provides a cost-effective study design for a large cohort study with competing risk outcomes. The proportional subdistribution hazards model is widely used to estimate direct covariate effects on the cumulative incidence function for competing risk data. In biomedical studies, left truncation often occurs and brings extra challenges to the analysis. Existing inverse probability weighting methods for case-cohort studies with competing risk data not only have not addressed left truncation, but also are inefficient in regression parameter estimation for fully observed covariates. We propose an augmented inverse probability-weighted estimating equation for left-truncated competing risk data to address these limitations of the current literature. We further propose a more efficient estimator when extra information from the other causes is available. The proposed estimators are consistent and asymptotically normally distributed. Simulation studies show that the proposed estimator is unbiased and leads to estimation efficiency gain in the regression parameter estimation. We analyze the Atherosclerosis Risk in Communities study data using the proposed methods.

Funder

National Cancer Institute

National Heart, Lung, and Blood Institute

National Institutes of Health

Department of Health and Human Services, State Government of Victoria

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3