Noninvasive assessment of left ventricular end-diastolic pressure using machine learning–derived phasic left atrial strain

Author:

Gruca Martin M1,Slivnick Jeremy A1,Singh Amita2,Cotella Juan I1,Subashchandran Varun1,Prabhu David3,Asch Federico M4,Siddiki Mikail1,Gupta Nikhil1,Mor-Avi Victor1ORCID,Su Jimmy L3,Lang Roberto M1

Affiliation:

1. Noninvasive Cardiac Imaging Laboratory, University of Chicago Medical Center , 5758 S. Maryland Ave., MC 9067, Chicago, IL 60637 , USA

2. Department of Cardiology, Northwestern Medicine Central DuPage Hospital , Winfield, IL , USA

3. Philips Healthcare , Cambridge, MA , USA

4. Health Research Institute, MedStar Health and Georgetown University , Washington, DC , USA

Abstract

Abstract Aims While transthoracic echocardiography (TTE) assessment of left ventricular end-diastolic pressure (LVEDP) is critically important, the current paradigm is subject to error and indeterminate classification. Recently, peak left atrial strain (LAS) was found to be associated with LVEDP. We aimed to test the hypothesis that integration of the entire LAS time curve into a single parameter could improve the accuracy of peak LAS in the noninvasive assessment of LVEDP with TTE. Methods and results We retrospectively identified 294 patients who underwent left heart catheterization and TTE within 24 h. LAS curves were trained using machine learning (100 patients) to detect LVEDP ≥ 15 mmHg, yielding the novel parameter LAS index (LASi). The accuracy of LASi was subsequently validated (194 patients), side by side with peak LAS and ASE/EACVI guidelines, against invasive filling pressures. Within the validation cohort, invasive LVEDP was elevated in 116 (59.8%) patients. The overall accuracy of LASi, peak LAS, and American Society of Echocardiography/European Association for Cardiovascular Imaging (ASE/EACVI) algorithm was 79, 75, and 76%, respectively (excluding 37 patients with indeterminate diastolic function by ASE/EACVI guidelines). When the number of LASi indeterminates (defined by near-zero LASi values) was matched to the ASE/EACVI guidelines (n = 37), the accuracy of LASi improved to 87%. Importantly, among the 37 patients with ASE/EACVI-indeterminate diastolic function, LASi had an accuracy of 81%, compared with 76% for peak LAS. Conclusion LASi allows the detection of elevated LVEDP using invasive measurements as a reference, at least as accurately as peak LAS and current diastolic function guideline algorithm, with the advantage of no indeterminate classifications in patients with measurable LAS.

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine,Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3