Impact of coronary calcium score and lesion characteristics on the diagnostic performance of machine-learning-based computed tomography-derived fractional flow reserve

Author:

Koo Hyun Jung1ORCID,Kang Joon-Won1,Kang Soo-Jin2,Kweon Jihoon3,Lee June-Goo3,Ahn Jung-Min2,Park Duk-Woo2,Lee Seung Whan2,Lee Cheol Whan2,Park Seong-Wook2,Park Seung-Jung2,Kim Young-Hak2,Yang Dong Hyun1ORCID

Affiliation:

1. Department of Radiology and Research Institute of Radiology, Cardiac Imaging Centre, Asan Medical Centre, University of Ulsan College of Medicine, 05505 Olympic-Ro 388-1 Seoul, South Korea

2. Division of Cardiology, Internal Medicine, Asan Medical Centre, University of Ulsan College of Medicine, 05505 Olympic-Ro, 388-1 Seoul, South Korea

3. Department of Convergence Medicine and Biomedical Engineering Research Centre, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, South Korea

Abstract

Abstract Aims To evaluate the impact of coronary artery calcium (CAC) score, minimal lumen area (MLA), and length of coronary artery stenosis on the diagnostic performance of the machine-learning-based computed tomography-derived fractional flow reserve (ML-FFR). Methods and results In 471 patients with coronary artery disease, computed tomography angiography (CTA) and invasive coronary angiography were performed with fractional flow reserve (FFR) in 557 lesions at a single centre. Diagnostic performances of ML-FFR, computational fluid dynamics-based CT-FFR (CFD-FFR), MLA, quantitative coronary angiography (QCA), and visual stenosis grading were evaluated using invasive FFR as a reference standard. Diagnostic performances were analysed according to lesion characteristics including the MLA, length of stenosis, CAC score, and stenosis degree. ML-FFR was obtained by automated feature selection and model building from quantitative CTA. A total of 272 lesions showed significant ischaemia, defined by invasive FFR ≤0.80. There was a significant correlation between CFD-FFR and ML-FFR (r = 0.99, P < 0.001). ML-FFR showed moderate sensitivity and specificity in the per-patient analysis. Diagnostic performances of CFD-FFR and ML-FFR did not decline in patients with high CAC scores (CAC > 400). Sensitivities of CFD-FFR and ML-FFR showed a downward trend along with the increase in lesion length and decrease in MLA. The area under the curve (AUC) of ML-FFR (0.73) was higher than those of QCA and visual grading (AUC = 0.65 for both, P < 0.001) and comparable to those of MLA (AUC = 0.71, P = 0.21) and CFD-FFR (AUC = 0.73, P = 0.86). Conclusion ML-FFR showed comparable results to MLA and CFD-FFR for the prediction of lesion-specific ischaemia. Specificities and accuracies of CFD-FFR and ML-FFR decreased with smaller MLA and long lesion length.

Funder

Korea Health Technology R&D Project

Ministry of Health & Welfare, Republic of Korea

he National Research Foundation of Korea

Korea Government

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3