Metabolic pathways associated with right ventricular adaptation to pulmonary hypertension: 3D analysis of cardiac magnetic resonance imaging

Author:

Attard Mark I12,Dawes Timothy J W123,de Marvao Antonio1,Biffi Carlo14,Shi Wenzhe14,Wharton John2,Rhodes Christopher J2,Ghataorhe Pavandeep2,Gibbs J Simon R3,Howard Luke S G E5,Rueckert Daniel4,Wilkins Martin R2,O’Regan Declan P1

Affiliation:

1. MRC London Institute of Medical Sciences, Du Cane Road, London, UK

2. Division of Experimental Medicine, Department of Medicine, Imperial College London, Du Cane Road, London, UK

3. Royal Brompton Cardiovascular Research Centre, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London, UK

4. Department of Computing, Imperial College London, South Kensington Campus, Queen’s Gate, London, UK

5. Imperial College Healthcare NHS Trust, Du Cane Road, London, UK

Abstract

Abstract Aims We sought to identify metabolic pathways associated with right ventricular (RV) adaptation to pulmonary hypertension (PH). We evaluated candidate metabolites, previously associated with survival in pulmonary arterial hypertension, and used automated image segmentation and parametric mapping to model their relationship to adverse patterns of remodelling and wall stress. Methods and results In 312 PH subjects (47.1% female, mean age 60.8 ± 15.9 years), of which 182 (50.5% female, mean age 58.6 ± 16.8 years) had metabolomics, we modelled the relationship between the RV phenotype, haemodynamic state, and metabolite levels. Atlas-based segmentation and co-registration of cardiac magnetic resonance imaging was used to create a quantitative 3D model of RV geometry and function—including maps of regional wall stress. Increasing mean pulmonary artery pressure was associated with hypertrophy of the basal free wall (β = 0.29) and reduced relative wall thickness (β = −0.38), indicative of eccentric remodelling. Wall stress was an independent predictor of all-cause mortality (hazard ratio = 1.27, P = 0.04). Six metabolites were significantly associated with elevated wall stress (β = 0.28–0.34) including increased levels of tRNA-specific modified nucleosides and fatty acid acylcarnitines, and decreased levels (β = −0.40) of sulfated androgen. Conclusion Using computational image phenotyping, we identify metabolic profiles, reporting on energy metabolism and cellular stress-response, which are associated with adaptive RV mechanisms to PH.

Funder

British Heart Foundation

Academy of Medical Sciences

Wellcome Trust

Medical Research Council

National Institute for Health Research

NIHR

Imperial College London

Healthcare NHS Trust

NHS

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3