A deep patient-similarity learning framework for the assessment of diastolic dysfunction in elderly patients

Author:

Shah Rohan1ORCID,Tokodi Marton12ORCID,Jamthikar Ankush1ORCID,Bhatti Sabha1ORCID,Akhabue Ehimare1ORCID,Casaclang-Verzosa Grace1ORCID,Yanamala Naveena1,Sengupta Partho P1ORCID

Affiliation:

1. Division of Cardiovascular Diseases and Hypertension, Robert Wood Johnson University Hospital (RWJUH), Rutgers Robert Wood Johnson Medical School (RWJMS) , 1 Robert Wood Johnson Place, New Brunswick, NJ 08901 , USA

2. Heart and Vascular Center, Semmelweis University , Budapest, Hungary

Abstract

Abstract Aims Age-related changes in cardiac structure and function are well recognized and make the clinical determination of abnormal left ventricular (LV) diastolic dysfunction (LVDD) particularly challenging in the elderly. We investigated whether a deep neural network (DeepNN) model of LVDD, previously validated in a younger cohort, can be implemented in an older population to predict incident heart failure (HF). Methods and results A previously developed DeepNN was tested on 5596 older participants (66–90 years; 57% female; 20% Black) from the Atherosclerosis Risk in Communities Study. The association of DeepNN predictions with HF or all-cause death for the American College of Cardiology Foundation/American Heart Association Stage A/B (n = 4054) and Stage C/D (n = 1542) subgroups was assessed. The DeepNN-predicted high-risk compared with the low-risk phenogroup demonstrated an increased incidence of HF and death for both Stage A/B and Stage C/D (log-rank P < 0.0001 for all). In multi-variable analyses, the high-risk phenogroup remained an independent predictor of HF and death in both Stages A/B {adjusted hazard ratio [95% confidence interval (CI)] 6.52 [4.20–10.13] and 2.21 [1.68–2.91], both P < 0.0001} and Stage C/D [6.51 (4.06–10.44) and 1.03 (1.00–1.06), both P < 0.0001], respectively. In addition, DeepNN showed incremental value over the 2016 American Society of Echocardiography/European Association of Cardiovascular Imaging (ASE/EACVI) guidelines [net re-classification index, 0.5 (CI 0.4–0.6), P < 0.001; C-statistic improvement, DeepNN (0.76) vs. ASE/EACVI (0.70), P < 0.001] overall and maintained across stage groups. Conclusion Despite training with a younger cohort, a deep patient-similarity–based learning framework for assessing LVDD provides a robust prediction of all-cause death and incident HF for older patients.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3