Immersive visualisation of intracardiac blood flow in virtual reality on a patient with HLHS

Author:

Bhattacharya S1,Lin E1,Sajith G1,Munroe L1,Pushparajah K1,Schnabel JA1,Simpson JM2,Gomez A1,De Vecchi A1,Deng S1,Wheeler G1

Affiliation:

1. King"s College London, School of Biomedical Engineering and Imaging Sciences, London, United Kingdom of Great Britain & Northern Ireland

2. Evelina Children"s Hospital, Department of Congenital Heart Disease, London, United Kingdom of Great Britain & Northern Ireland

Abstract

Abstract Funding Acknowledgements Type of funding sources: Other. Main funding source(s): NIHR i4i funded 3D Heart project Wellcome/EPSRC Centre for Medical Engineering [WT 203148/Z/16/Z] onbehalf 3D Heart Project Background/Introduction: Virtual Reality (VR) for surgical and interventional planning in the treatment of Congenital Heart Disease (CHD) is an emerging field that has the potential to improve planning. Particularly in very complex cases, VR permits enhanced visualisation and more intuitive interaction of volumetric images, compared to traditional flat-screen visualisation tools. Blood flow is severely affected by CHD and, thus, visualisation of blood flow allows direct observation of the cardiac maladaptions for surgical planning. However, blood flow is fundamentally 3D information, and viewing and interacting with it using conventional 2D displays is suboptimal.  Purpose To demonstrate feasibility of blood flow visualisation in VR using pressure and velocity obtained from a computational fluid dynamic (CFD) simulation of the right ventricle in a patient with hypoplastic left heart syndrome (HLHS) as a proof of concept. Methods  We extend an existing VR volume rendering application to include CFD rendering functionality using the Visualization Toolkit (VTK), an established visualisation library widely used in clinical software for visualising medical imaging data. Our prototype displays the mesh outline of the segmented heart, a slicing plane showing blood pressure on the plane within the heart, and streamlines of blood flow from a spherical source region. Existing user tools were extended to enable interactive positioning, rotation and scaling of the pressure plane and streamline origin, ensuring continuity between volume rendering and CFD interaction and, thus, ease of use. We evaluated if rendering and interaction times were low enough to ensure a comfortable, interactive VR experience. Our performance benchmark is a previous study showing VR is acceptable to clinical users when rendering speed is at least 90 fps. Results CFD simulations were successfully rendered, viewed and manipulated in VR, as shown in the Figure. Evaluating performance, we found that visualisation of the mesh and streamlines was at an acceptably high and stable frame rate, over 150fps. User interactions of moving, rotating or scaling the mesh or streamlines origin did not significantly reduce this frame rate. However, rendering the  pressure slicing plane reduced frame rate by an unacceptable degree, to less than 10fps.   Conclusion Visualisation of and interaction with CFD simulation data was successfully integrated into an existing VR application. This aids in surgery and intervention planning for defects heavily relying on blood flow simulation, and lays a foundation for a platform for clinicians to test interventions in VR. Pressure plane rendering performance will require significant optimisation, potentially addressed by updating the pressure plane data separately from the main, VR rendering. Abstract Figure. An example render of CFD simulation

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine,Radiology Nuclear Medicine and imaging,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3