Study on the fastening property of precision locknut under simulated dynamic impact loading with consideration of interference factors

Author:

Chang Huey-Ling12ORCID,Chen Chih-Ming3ORCID,Lee Chun-Ying4ORCID,Huang Zi-Xuan3

Affiliation:

1. D , Taichung , Taiwan

2. epartment of Chemical and Materials Engineering, National Chin-Yi University of Technology , Taichung , Taiwan

3. Department of Mechanical Engineering, National Chin-Yi University of Technology , Taichung , Taiwan

4. Department of Mechanical Engineering National Taipei University of Technology , Taipei , Taiwan

Abstract

Abstract Screw thread fastening system is the category of mechanical connection utilizing both wedge and friction actions to transfer clamping force and torque. This fastening system shows the advantages of simple in structure and ease in application. However, its shortcomings include the performance limitation by dimension and precision, stress concentration induced by the notch geometry, loosening in dynamical service, susceptible to atmospheric condition, etc. Therefore, the possible interference on the anti-loosening property of the locknut by noise factors of the ambient temperature, operator characteristics, and type of torque wrench used was investigated using Taguchi method in this study beside the main control factors of type of locknut, fit clearance, and type of lubrication grease. The goal was to evaluate the anti-loosening property of the locknut, i.e. the anti-loosening ratio and axial force ratio, in a more realistic manner. The connection joint of the locknut was subjected to cyclic transverse impact and the anti-loosening property was measured after a specified number of cycles. The loading effect on the surface roughness of thread surface was examined and discussed after the test. It was found that the factor of locknut type dominated the influence over the lubrication grease and fit clearance factors. Through the analysis, the design with optimal combination of the control factors improved the axial force ratio and anti-loosening ratio by 7.8% and 47.9%, respectively.

Funder

National Science and Technology Council

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3