Power-law fluid annular flows between concentric rotating spheres subject to hydrodynamic slip

Author:

Huang Hsin-Fu1ORCID,Tseng Po-Han1

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University , Taipei , Taiwan

Abstract

ABSTRACT We report analytical solutions to the problem of non-Newtonian power-law fluid flows in the annular space between a pair of concentric spherical surfaces rotating at distinct angular velocities with the inner and outer wall boundaries subject to general asymmetric hydrodynamic slip conditions. Analytical solutions are possible because of assuming constant valued apparent hydrodynamic slip lengths in the linearized kinematic slip conditions, and our solutions can be validated against the limiting results of Newtonian fluids, no-slip conditions or a single rotating sphere reported in previous literature. Comprehensive systematic parametric studies show that (additional to the power-law fluid flow behavior index) the degree of hydrodynamic slip at the inner surface is the dominant factor that determines the limiting values of the viscous torque exerted on the inner sphere as the outer-to-inner radius ratio assumes significantly large values. Nonetheless, the flow behavior index and outer slip length prove to be the crucial key parameters responsible for a variety of torque responses, which can be categorized by a compact analytical expression, as the outer-to-inner radius ratio is increased in the small to moderate regime. We propose a criteria which identifies the proper slip length and outer-to-inner radius ratio combinations for a given power-law flow behavior index such that the hydrodynamic slip wall effects of the outer surface can be minimized or eliminated. A simple method is also presented to characterize and quantify the apparent hydrodynamic slip effects by use of the concentric rotating spheres viscometer.

Funder

National Science and Technology Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3