Effect of redox imbalance on protein modifications in lymphocytes of psoriatic patients

Author:

Wójcik Piotr1,Gęgotek Agnieszka1,Wroński Adam2,Jastrząb Anna1,Żebrowska Agnieszka3,Skrzydlewska Elżbieta1

Affiliation:

1. Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland

2. Dermatological Specialized Center “DERMAL” NZOZ in Białystok, Nowy Świat 17/5, 15-453 Białystok, Poland

3. Regional Center for Blood Donation and Blood Treatment, M. Skłodowskiej - Curie 23, 15-950 Białystok, Poland

Abstract

AbstractLymphocytes are one of the most important cells involved in the pathophysiology of psoriasis; therefore, the aim of this study was to assess the redox imbalance and protein modifications in the lymphocytes of patients with psoriasis vulgaris (PsV) or psoriatic arthritis (PsA). The results show a stronger shift in redox status to pro-oxidative conditions (observed as an increased reactive oxygen species level, a decrease in catalase activity and lower levels of glutathione peroxidase and vitamin E compared with healthy controls) in the lymphocytes of PsA than PsV patients. It is also favoured by the enhanced level of activators of the Nrf2 transcription factor in lymphocytes of PsV compared with decreased of these proteins level in PsA. Moreover, the differential modifications of proteins by lipid peroxidation products 4-oxononenal (mainly binding proteins) and malondialdehyde (mainly catalytic proteins with redox activity), promoted a pro-apoptotic pathway in lymphocytes of PsV, which was manifested by enhanced expression of pro-apoptotic caspases, particularly caspase 3. Taken together, differences in Nrf2 pathway activation may be responsible for the differential level of redox imbalance in lymphocytes of patients with PsV and PsA. This finding may enable identification of a targeted therapy to modify the metabolic pathways disturbed in psoriasis.

Funder

National Science Centre Poland

NCN

Medical University of Białystok

Foundation for Polish Science

FNP

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3