Zinc-Biofortified Wheat Intake and Zinc Status Biomarkers in Men: Randomized Controlled Trial

Author:

Liong Erinn M1,McDonald Christine M12,Suh Jung1,Westcott Jamie L3,Wong Carmen P4,Signorell Coralie1,King Janet C15ORCID

Affiliation:

1. Children's Hospital Oakland Research Institute, Oakland, CA, USA

2. Department of Pediatrics, University of California, San Francisco, CA, USA

3. School of Medicine, University of Colorado, Denver, CO, USA

4. School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA

5. Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA

Abstract

ABSTRACT Background Biofortification is a novel method for improving the nutritional value of grains. Wheat is widely consumed worldwide. Thus, wheat zinc biofortification may improve the zinc status of populations. Objectives We determined the effect of consuming zinc-biofortified wheat on plasma zinc concentrations and biomarkers of zinc-dependent functions in a controlled feeding study. Methods Thirty-six healthy adult men, aged 18 to 51 y, participated in a 10-wk zinc-controlled feeding trial. After a 2-wk run-in period [metabolic period (MP) 1] (9.3 mg zinc/d and 2.1 g total phytate/d) to standardize zinc status, the participants consumed bread made from zinc-biofortified wheat (10.9 mg zinc/d) with no additional phytate (0.6 g/d total phytate) for 6 wk (MP2). During the final 2 wk (MP3), half of the men took a 25-mg zinc supplement daily to determine if the supplement further altered zinc status biomarkers. Repeated-measures linear regression methods were used to compare plasma zinc concentrations, fatty acid desaturase (FADS) activities, glutathione (GSH) concentrations, and DNA strand breaks assessed at enrollment and the end of each metabolic period. Results Plasma zinc concentrations did not change throughout the study. From the end of MP1 to the end of MP2, the conversion of linoleic acid to γ-linolenic acid (FADS2 activity) increased from 0.020 to 0.025 (P = 0.02), and the conversion of dihomo-γ-linolenic acid to arachidonic acid (FADS1 activity) decreased from 6.37 to 5.53 (P = 0.01). GSH concentrations and DNA strand breaks did not change. Zinc supplementation (25 mg/d) in MP3 did not alter any of the endpoints. Conclusions In healthy adult men, a 1.6-mg/d increase in dietary zinc from biofortified wheat modified FADS2 and FADS1 activities without changing DNA damage, plasma zinc, or GSH concentrations, demonstrating that FADS activities are more sensitive to small changes in zinc consumed with a meal. This trial was registered at clinicaltrials.gov as NCT03451214.

Funder

UK Government

Bill & Melinda Gates Foundation

Government of Canada

European Commission

John D. and Catherine T. MacArthur Foundation

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3