Interrelationships between sex and dietary lysine on growth performance and carcass composition of finishing boars and gilts1

Author:

Aymerich Pau11ORCID,Soldevila Carme1,Bonet Jordi1,Farré Mercè2,Gasa Josep3,Coma Jaume1,Solà-Oriol David3ORCID

Affiliation:

1. Vall Companys Group, Lleida, Spain

2. $Department of Mathematics, Area of Statistics and Operations Research, Universitat Autònoma de Barcelona, Bellaterra, Spain

3. Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain

Abstract

Abstract The main goals of this study were to determine whether boars and gilts respond differently to the standardized ileal digestible lysine to net energy ratio (SID Lys:NE) and model the response to optimize growth performance. A total of 780 finishing pigs, 390 boars and 390 gilts [Pietrain NN × (Landrace × Large White)], with an initial individual body weight of 70.4 ± 9.2 for boars and 68.7 ± 8.0 kg for gilts, were used in a 41-d dose–response experiment. Pens (13 pigs per pen) were randomly allocated to a dietary treatment (2.64, 3.05, 3.46, 3.86, 4.27 g SID Lys/Mcal NE) by block and sex, with six replicates per treatment and sex. Two isoenergetic diets (2,460 kcal NE/kg), representing the extreme SID Lys:NE, were formulated and then mixed. Pigs were individually weighed at days 0, 22, and 41, when the experiment finished. The differential effect of SID Lys:NE on growth performance and carcass composition between sexes was analyzed with orthogonal polynomial contrasts to compare the linear and quadratic trends in each sex. In addition, broken-line linear (BLL) models to optimize average daily gain (ADG), including average daily feed intake (ADFI) as a covariate, were fitted when possible. As expected, boars had a greater ADG and feed efficiency (G:F; P < 0.001) than gilts, but there was no evidence of differences in ADFI (P = 0.470). Increasing SID Lys:NE had a greater linear impact on boars ADG (P = 0.087), G:F (P = 0.003), and carcass leanness (P = 0.032). In contrast, gilts showed a greater linear increase in SID Lys intake per kg gain (P < 0.001) and feed cost per kg gain (P = 0.005). The best fitting BLL models showed that boars maximized ADG at 3.63 g SID Lys/Mcal NE [95% confidence interval (CI): (3.32 to 3.94)], although another model with a similar fit, compared with the Bayesian information criterion, reported the optimum at 4.01 g SID Lys/Mcal NE [95% CI: (3.60, 4.42)]. The optimum to maximize ADG for gilts was estimated at 3.10 g SID Lys/Mcal NE [95% CI: (2.74, 3.47)]. Thus, the present study confirmed that boars and gilts have a different linear response to SID Lys:NE, explained by the greater protein deposition potential of boars. Likewise, BLL models indicated that boars require a higher SID Lys:NE to maximize ADG from 70 to 89 kg. These results suggest that split feeding of finishing boars and gilts could be beneficial in terms of both performance and cost return.

Funder

Department for Universities and Research

Ministry of Business and Knowledge of Generalitat de Catalunya

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

Reference47 articles.

1. Effect of single-sex or mixed rearing and live weight on performance, technological meat quality and sexual maturity in entire male and female pigs fed raw potato starch;Andersson;Acta Agric. Scand. Sect. A Anim. Sci,2005

2. The effects of sire line, sex, weight and marketing day on carcass fatness of non-castrated pigs;Aymerich;Livest. Sci,2019

3. Increasing dietary lysine impacts differently growth performance of growing pigs sorted by body weight;Aymerich;Animals,2020

4. A toolbox for nonlinear regression in r: The package nlstools;Baty;J. Stat. Softw,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3