Affiliation:
1. Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
Abstract
Abstract
We analyzed early brain metabolic adaptations in response to mitochondrial dysfunction in a mouse model of mitochondrial encephalopathy with complex IV deficiency [neuron-specific COX10 knockout (KO)]. In this mouse model, the onset of the mitochondrial defect did not coincide with immediate cell death, suggesting early adaptive metabolic responses to compensate for the energetic deficit. Metabolomic analysis in the KO mice revealed increased levels of glycolytic and pentose phosphate pathway intermediates, amino acids and lysolipids. Glycolysis was modulated by enhanced activity of glycolytic enzymes, and not by their overexpression, suggesting the importance of post-translational modifications in the adaptive response. Glycogen synthase kinase 3 inactivation was the most upstream regulation identified, implying that it is a key event in this adaptive mechanism. Because neurons are thought not to rely on glycolysis for adenosine triphosphate production in normal conditions, our results indicate that neurons still maintain their ability to upregulate this pathway when under mitochondrial respiration stress.
Funder
James and Esther King Research Program Florida Department of Health
National Institute of Health
United Mitochondrial Disease Foundation
Army Research Office
Publisher
Oxford University Press (OUP)
Subject
Genetics(clinical),Genetics,Molecular Biology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献