Comparison of adaptive multiple phenotype association tests using summary statistics in genome-wide association studies

Author:

Sitlani Colleen M1,Baldassari Antoine R2,Highland Heather M2,Hodonsky Chani J3,McKnight Barbara4,Avery Christy L2

Affiliation:

1. Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA

2. Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516 USA

3. Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908 USA

4. Department of Biostatistics, University of Washington, Seattle, WA 98195 USA

Abstract

Abstract Genome-wide association studies have been successful mapping loci for individual phenotypes, but few studies have comprehensively interrogated evidence of shared genetic effects across multiple phenotypes simultaneously. Statistical methods have been proposed for analyzing multiple phenotypes using summary statistics, which enables studies of shared genetic effects while avoiding challenges associated with individual-level data sharing. Adaptive tests have been developed to maintain power against multiple alternative hypotheses because the most powerful single-alternative test depends on the underlying structure of the associations between the multiple phenotypes and a single nucleotide polymorphism (SNP). Here we compare the performance of six such adaptive tests: two adaptive sum of powered scores (aSPU) tests, the unified score association test (metaUSAT), the adaptive test in a mixed-models framework (mixAda) and two principal-component-based adaptive tests (PCAQ and PCO). Our simulations highlight practical challenges that arise when multivariate distributions of phenotypes do not satisfy assumptions of multivariate normality. Previous reports in this context focus on low minor allele count (MAC) and omit the aSPU test, which relies less than other methods on asymptotic and distributional assumptions. When these assumptions are not satisfied, particularly when MAC is low and/or phenotype covariance matrices are singular or nearly singular, aSPU better preserves type I error, sometimes at the cost of decreased power. We illustrate this trade-off with multiple phenotype analyses of six quantitative electrocardiogram traits in the Population Architecture using Genomics and Epidemiology (PAGE) study.

Funder

National Institutes of Health

American Diabetes Association

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3